Abstract

Bi-functionalized ionic liquid (IL) — mesoporous alumina (MA) composite material was synthesized and used for CO2 capture. Ordered mesoporous alumina was synthesized by self-assembly method with aluminum isopropoxide as aluminum source. Then bi-functionalized ionic liquid 1-methoxyethyl-3-methyl imidazole glycinate ([MOEmim][Gly]) was immobilized on mesoporous alumina by ultrasonic-assisted impregnation method. Ordered mesostructure of alumina keeps well in the composite material. Compared with bi-functionalized ionic liquid, thermal stability of the composite material greatly improved. Finally, CO2 capture capacity of IL-MA composite material was studied under different temperatures. On the basis of both capture capacity and capture rate, 40 ·C is the optimal temperature. The capture capacity is 1.42 mol·mol IL−1 — equivalent to 144 mg·g sorben−1, which is higher than IL or MA alone. Furthermore, the capture capacity of composite material almost maintains constant after eight capture-regeneration cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.