Abstract

Bismuth sulfide (Bi2S3) is considered as an attractive anode material for sodium-ion battery (SIB) systems owing to its high theoretical capacity (625 mAh g−1) and laminar structure for storing host ions. However, capacity fading due to the large volume change during long term cycling is a serious problem preventing the practical application of this material to SIBs. Also, its electrical conductivity is still unsatisfactory. To solve those problems, the design of a Bi2S3/C composite with a yolk-shell type structure is proposed. The synthesis method of Bi2S3/C yolk-shell composite includes the fabrication of Bi/C yolk-shell platforms followed by a simple sulfur-impregnation step to obtain Bi2S3/C yolk-shell composites. This sulfur-impregnation step does not result in any degradation of the particle structure and preserves the uniform carbon shell. Furthermore, the Bi2S3/C yolks-shell composite displays enhanced electrochemical performance as an SIB anode material and exhibits high stability during long-term cycling (282.4 mAh g−1 after 300 cycles at 0.2C) and improved rate capability (413.0 mAh g−1 at 10C). These improvements are mainly attributed to the conductive electron pathway provided by the carbon shell and the suppression of large volume changes due to the presence of voids in the yolk-shell structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.