Abstract

Iron-based nanoparticles (FeNPs) have unique and attractive properties such as superparamagnetism, biocompatibility, and catalytic activity. Although the synthesis of precious metal NPs from a metal in liquid and/or metal salt solution by a pulsed laser has been investigated, comparably little effort has been devoted to examine the production of FeNPs. Here we report the synthesis of carbon-shell free spherical NPs of iron oxide (magnetite) from ferrocene hexane solution by femtosecond near infrared laser pulses. Nanosecond UV laser pulses are used to compare the evolution of the particle size distribution as a function of laser irradiation time. The size of NPs remains constant even for extended exposure to femtosecond laser pulses, whereas it grows with exposure to nanosecond laser pulses. The primary particles are generated by photochemical reactions regardless of pulse duration; however, the fragmentation of NPs by successive femtosecond laser pulses regulates the particle size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.