Abstract

The use of agrochemicals for crop protection may result in the presence of toxic residues in soils and aquatic environments, besides in foodstuffs. Most often just the parent compound is included in the definition of pesticide residue, even though chemicals resulting from biotransformation and degradation routes might also be of toxicological relevance. Azoxystrobin is a broad-spectrum systemic fungicide widely used worldwide to combat pathogenic fungi affecting plants. We herein report the synthesis and detailed chemical characterization of several of the most relevant metabolites and degradates of azoxystrobin. These compounds were further employed as ligands for screening a collection of monoclonal antibodies to azoxystrobin, which had been previously generated from haptens functionalized at different positions of the target chemical. As a result, an antibody was identified capable of binding, with subnanomolar affinity, not only azoxystrobin but also its main transformation products, such as the so-called acid and enol derivatives, as well as the azoxystrobin (Z)-isomer. The selected binder was demonstrated as a useful immunoreagent for the development of immunochemical assays as novel analytical tools for the qualitative determination of azoxystrobin and its metabolites and degradates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call