Abstract

A novel sensor material of Au nanoparticles (NPs) functionalized 1D [Formula: see text]-MoO3 nanobelts (NBs) was fabricated by a facile lysine-assisted approach. The obtained Au/[Formula: see text]-MoO3 product was characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray (EDX), and X-ray photoelectron spectra (XPS). Then, in order to investigate the gas sensing performances of our samples, a comparative gas sensing study was carried out on both the [Formula: see text]-MoO3 NBs before and after Au NPs decoration by using ethanol vapor as the molecular probe. The results turned out that, after the functionalization of Au NPs, the sensor exhibited improved gas-sensing characteristics than the pure [Formula: see text]-MoO3, such as response and recovery time, optimal operating temperature (OT) and excellent selectivity. Take for example 200[Formula: see text]ppm of ethanol, the response/recovery times were 34[Formula: see text]s/43[Formula: see text]s and 5.7[Formula: see text]s/10.5[Formula: see text]s, respectively, while the optimal operating temperature (OT) was lower to 200[Formula: see text]C rather than 250[Formula: see text]C. Besides, the functionalized sensor showed a higher response to ethanol at 200[Formula: see text]C, and response was 1.6 times higher than the pure MoO3. The mechanism of such improved sensing properties was interpreted, which might be attributed to the spillover effect of Au NPs and the electronic metal-support interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call