Abstract
Microstructural changes due to neutron irradiation cause an evolution of the mechanical properties of reactor pressure vessels (RPV) steels. This paper aims at identifying and characterising the microstructural changes which have been found to be responsible in part for the observed embrittlement. This intensive work relies principally on an atom probe (AP) study of a low Cu-level French RPV steel (Chooz A). This material has been irradiated in in-service conditions for 0–16 years in the frame of the surveillance program. Under this aging condition, solute clustering occurs (Cu, Ni, Mn, Si, P, …). In order to identify the role of copper, experiments were also carried out on Fe–Cu model alloys submitted to different types of irradiations (neutron, electron, ion). Cu-cluster nucleation appears to be directly related to the presence of displacement cascades during neutron (ion) irradiation. The operating basic physical process is not clearly identified yet. A recovery of the mechanical properties of the irradiated material can be achieved by annealing treatments (20 h at 450°C in the case of the RPV steel under study, following microhardness measurements). It has been shown that the corresponding microstructural evolution was a rapid dissolution of the high number density of irradiation-induced solute clusters and the precipitation of a very low number density of Cu-rich particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.