Abstract
Nanostructures composed of a gold nanorod (AuNR) core and a Pd/Pt shell are of great interest due to their potential application as plasmon resonance-enhanced catalysts. However, the synthesis of well-defined one-dimensional bimetallic nanostructures with precise control over shell thickness and length remains a challenge. In this study, we report a detailed and systematic study on the chemical synthesis of a uniform Pd shell on single crystalline and pentahedrally twinned (PHT) AuNRs of various lengths. AuNRs were used as a template, and the slow and controlled reduction of Pd(II) ions on preformed AuNRs was carried out for the formation of rectangular-shaped Au@Pd bimetallic nanorods. The Pd shell thickness around the AuNRs was controlled by the supply of Pd(II) ions in the growth solution. We were able to grow a ∼20 nm uniform Pd shell around the AuNR, keeping the rod-like morphology intact without local nucleation to form irregular shapes and randomly overgrown nanostructures. The formation of bimetallic nanorods was also extended beyond typical single crystalline nanorods to PHT high aspect ratio gold nanorods and nanowires, using them as templates. To our surprise, unusually curved asymmetric nanorods were formed when the Pd deposition was carried out on AuNRs longer than ∼800 nm which could be possibly due to a Pd and Au lattice mismatch at the interface and higher flexibility of the nanorods when they exceeded certain lengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.