Abstract

Blood flow interruption is associated with oxygen depletion and loss of factors for function and survival in downstream tissues or cells. Hypoxia and absence of gonadotropins trigger apoptosis and atresia in the ovary. We studied the antioxidant response of follicular cells to plasma deprivation in ovaries dissected from water buffalo. Aliquots of follicular fluid were aspirated from each antral follicle, before and during incubation of the ovaries at 39°C. Urate, ascorbate, retinol and α-tocopherol in the fluid were, titrated by High Performance Liquid Chromatography (HPLC) with spectrophotometric or spectrofluorimetric detection. The total antioxidant capacity of follicular fluid was determined as absorbance decrease, following addition of a source of radical chromophores. The more the incubation progressed, the higher levels of urate, ascorbate and total antioxidant capacity were found. Conversely, changes in concentration of the liposoluble antioxidants were not observed. Ascorbate synthesizing activity in the follicle was demonstrated by detecting the enzyme L-gulono-γ-lactone oxidase in microsomes prepared from granulosa cells. These cells were also analyzed for the expression of the enzyme CPP32. The enzyme level, measured as DEVD-p-nitroanilide cleaving activity, was found related with the immunoreactivity to anti-CPP32 antibodies. Negative correlation between the enzyme activity (which is known to be induced by peroxynitrite) and the follicular level of urate (which scavenges peroxynitrite) was also observed. The amount of nitrotyrosine, a product of peroxynitrite attack on proteins, was measured in follicular fluids by Enzyme Linked ImmunoSorbent Assay (ELISA). This amount was found positively correlated with the CPP32 activity, and negatively correlated with the urate level in follicular fluid. Alterations in concentrations of ascorbate or urate may be associated with oxidative stress during follicular atresia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.