Abstract
Anthraquinones and coumarins have excellent pharmacological activities and are an important class of natural plant metabolites with various biological activities. In this study, anthraquinone-9,10-dione and coumarin derivatives were combined to develop a novel anthraquinone-connected coumarin-derivative sequence. The synthesised novel anthraquinone-connected coumarin derivatives (1a-t) were screened for in vitro antibacterial, antioxidant, and tyrosinase inhibitory activities. The antibacterial activities of the synthesised compounds (1a–t) were tested against both gram-positive and gram-negative bacteria. Specifically, compound 1t was more active against E. aerogenes than ciprofloxacin. With regard to antioxidant activity, compound 1o (50.68 % at 100 μg/mL) was highly active compared to the other compounds, whereas it was less active than the standard BHT (76.74 % at 100 μg/mL). In terms of compound 1r (9.31 ± 0.45 μg/mL) was highly active against tyrosinase inhibitory activity compared with kojic acid (10.42 ± 0.98 μg/mL). In the molecular docking study, compound 1r had a higher docking score (−8.8 kcal mol−1) than kojic acid (−1.7 kcal mol−1). DFT calculations were performed to determine the energy gap of highly active compound 1r (ΔE = 0.11) and weakly active compound 1a (ΔE = 0.12). In this study, we found that every molecule displayed significant antibacterial, antioxidant, and tyrosinase inhibitory properties. Based on these reports, compounds 1r and 1t may act as multi-target agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.