Abstract

While phenyl vinyl ether does not react with [Ru(η4-1,5-COD)(η6-1,3,5-COT)] (1)/PMe3, the C–O bond cleavage of phenyl vinyl ether occurs by 1/PMe3 in the presence of water to give a tris(μ-hydroxo)diruthenium(II) complex [(Me3P)3Ru(μ-OH)3Ru(PMe3)3]+[OPh]−·HOPh (3·HOPh) with evolution of ethylene. The molecular structure of 3·HOPh is unequivocally determined by X-ray analysis. The most likely mechanism for the formation of 3·HOPh is protonation of [Ru(η4-1,5-COD)(PMe3)3] (2c) by water and subsequent insertion of phenyl vinyl ether into the resulting Ru–H bond followed by the β-phenoxide elimination and hydrolysis and dimerization of the phenoxoruthenium(II) species. Complex 3 acts as a catalyst for nitrile hydration. As a typical example, the hydration of benzonitrile was achieved by 3 (1.0mol%) in 1,4-dioxane at 120°C for 6h to give benzamide quantitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.