Abstract

This article presents the detailed synthesis and characterization protocols for an ortho-functionalized tetrafluorinated azobenzene containing siRNA, which has photoswitchable properties. To design this tetrafluorinated azobenzene scaffold, several synthetic steps are performed to generate a symmetrical tetrafluorinated azobenzene diol. This diol is treated with dimethoxytrityl chloride (DMT-Cl) to protect one of the alcohols. Next, the DMT-protected tetrafluorinated monoalcohol is phosphitylated to afford the DMT-phosphoramidite building block used for solid-phase synthesis. This paper also contains the detailed biophysical characterization, biological testing, and photo-switching protocols of an ortho-functionalized fluorinated azobenzene containing siRNA (F-siRNA), which has photoswitchable properties that can be controlled with visible light. First, the F-siRNA was characterized by annealing the sense and antisense strands together and then measuring the circular dichroism (CD) profile and melting temperature (Tm ) of the duplexes. Second, biological testing of the F-siRNA is performed in cell culture to determine their gene silencing efficacy. Finally, their gene-silencing activities are measured after exposure to green light to inactivate the F-siRNA, followed by blue light, which reactivates the F-siRNA. The F-siRNA can be kept inactive for up to 72 hr and reactivated at any time within this 72-hr window. © 2023 Wiley Periodicals LLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.