Abstract

Cell-penetrating peptides and proteins (CPPs) are important tools for the delivery of impermeable molecules into living mammalian cells. To enable these cells to internalize proteins fused to common oligohistidine affinity tags, we synthesized an artificial cell surface receptor comprising an N-alkyl derivative of 3beta-cholesterylamine linked to the metal chelator nitrilotriacetic acid (NTA). This synthetic receptor inserts into cellular plasma membranes, projects NTA headgroups from the cell surface, and rapidly cycles between the plasma membrane and intracellular endosomes. Jurkat lymphocytes treated with the synthetic receptor (10 microM) for 1 h displayed approximately 8,400,000 [corrected]NTA groups on the cell surface. Subsequent addition of the green fluorescent protein AcGFP fused to hexahistidine or decahistidine peptides (3 microM) and Ni(OAc)(2) (100 microM) enhanced the endocytosis of AcGFP by 150-fold (hexahistidine fusion protein) or 600-fold (decahistidine fusion protein) within 4 h at 37 degrees C. No adverse effects on cellular proliferation or morphology were observed under these conditions. By enabling common oligohistidine affinity tags to function as cell-penetrating peptides, this metal-chelating cell surface receptor provides a useful tool for studies of cellular biology [corrected]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call