Abstract

AbstractA graft copolymer of poly(vinylidene fluoride) (PVDF) with a glucose‐carrying methacrylate, 3‐O‐methacryloyl‐1,2:5,6‐di‐O‐isopropylidene‐D‐glucofuranose, was synthesized via the atom transfer radical polymerization technique with commercial PVDF as the macroinitiator. After a treatment with 88% formic acid, the isopropylidenyl groups of the precursor graft copolymer [poly(vinylidene fluoride)‐g‐poly(3‐O‐methacryloyl‐1,2:5,6‐di‐O‐isopropylidene‐ D‐glucofuranose)] were converted into hydroxyl groups, and this produced an amphiphilic graft copolymer (PVDF‐g‐PMAG) [poly(vinylidene fluoride)‐g‐poly(3‐O‐methacryloyl‐α,β‐D‐glucopyranose)] with glycopolymer side chains and a narrow molecular weight distribution (weight‐average molecular weight/number‐average molecular weight < 1.29). This glucose‐carrying graft copolymer was characterized with Fourier transform infrared, proton nuclear magnetic resonance, gel permeation chromatography, and thermogravimetric analysis. A novel porous membrane prepared from blends of PVDF with PVDF‐g‐PMAG via an immersion–precipitation technique exhibited significantly enhanced hydrophilicity and an anti‐protein‐adsorption property. The surface chemical composition and morphology of the membrane were studied with X‐ray photoelectron spectroscopy and scanning electron microscopy, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.