Abstract

In this work, we report synthesis and rheology of an interesting structured fluid based on the self-assembly of amphiphilic dendrons and wormlike micelles. Two amphiphilic dendrons were synthesized by the combination of aliphatic chains and polar dendritic heads. They showed different degrees of hydrophobicity and formed micelles in aqueous solution at critical micelle concentrations (CMC) of 25 and 125 ppm. The dendrons were soluble in water up to a concentration of approximately 1200 ppm, and produced no measurable increase in the viscosity of the solvent. The rheology of solutions of mixtures of each dendron with cetyltrimethylammonium p-toluenesulfonate (CTAT, a cationic surfactant) was characterized in simple shear flow. In the concentration range in which CTAT forms semidilute solutions of wormlike micelles, dendron addition produced a substantial synergy in zero-shear rate viscosity. Parallel-plate oscillatory shear measurements demonstrated that the CTAT/dendron mixtures are significantly more elastic than CTAT solutions. The viscosity synergy occurs at dendron concentrations lower than their CMC, and it is stronger for the more hydrophobic dendron. This suggests that the interactions between dendrons and wormlike micelles are basically hydrophobic, which implies attachment of dendron micelles to wormlike CTAT micelles in a manner similar to micellization of surfactants on polyelectrolytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call