Abstract

Amphiphilic block copolymers, methoxy polyethylene glycol-b-poly(butyl methacrylate), were synthesized via activators regenerated by electron transfer for atom transfer radical polymerization(ARGET ATRP) of butyl methacrylate (BMA), where pentamethyldiethylene triamine (PMDETA) was utilized as the ligand. The results show that the minimum amount of the catalyst required in the ARGET ATRP of BMA with a high degree of control depends upon the molar ratio of [catalyst]0/[initiator]0. With PMDETA as the ligand and methoxy polyethylene glycol 2-bromo-iso-butyrate (MPEG-Br) as the macro-initiator, the ratio of [CuBr2]0/[MPEG-Br]0 should be higher than 0.025:1. At this value, the copper catalyst level can be lowered to 50ppm when the degree of polymerization of the BMA segment is set at 500. Reaction conditions that impact the controllability of the polymerization and the corresponding properties of the block copolymers were investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.