Abstract

Two alternating copolymers of dithienosilole (DTS) were designed and synthesized with small optical band gaps, flanked by thienyl units as electron-donor moieties and benzothiadiazole dicarboxylic imide (BTDI) as electron-acceptor moieties. The BTDI moieties were anchored to two different solubilizing side chains, namely 3,7-dimethyloctyl and n-octyl chains. An analysis of the effect of the electrochemical, optical, thermal, and structural characteristics of the resulting polymers along with their solubility and molecular weight is the subject of this paper. The Stille polymerization was used to synthesize PDTSDTBTDI-DMO and PDTSDTBTDI-8. The average molecular weight of PDTSDTBTDI-DMO and PDTSDTBTDI-8 is 14,600 and 5700 g mol−1, respectively. Both polymers have shown equivalent optical band gaps around 1.4 eV. The highest occupied molecular orbital (HOMO) levels of the polymers were comparable, around −5.2 eV. The lowest unoccupied molecular orbital (LUMO) values were −3.56 and −3.45 eV for PDTSDTBTDI-DMO and PDTSDTBTDI-8, respectively. At decomposition temperatures above 350 °C, both copolymers showed strong thermal stability. The studies of powder X-ray diffraction (XRD) have shown that they are amorphous in a solid-state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.