Abstract

α-Tricalcium phosphate (α-TCP) is an important reactive component in calcium phosphate bone cements which are used for the bone tissue regeneration and augmentation. By thermally treating amorphous calcium phosphate (ACP) at relatively low temperatures (650–900 °C), it is possible to obtain sub-micrometre or nanosized α-TCP particles. In the current research, it is shown that the aqueous synthesis environment where ACP is precipitated has significant influence on the stability of ACP and the α-TCP content in the thermally treated products. During ACP synthesis pH must be kept basic. While it is possible to synthesize ACP if potassium hydroxide or sodium hydroxide is used to raise the pH of synthesis, ammonium ions also must be present in the solution to obtain α-TCP after thermal treatment of ACP. If sodium hydroxide is used, higher α-TCP content is obtained (compare 89 % and 66 %). Increase of Ca/P ratio stabilizes ACP and allows to obtain products with high α-TCP content. Increase of both calcium and phosphate ion concentration in the synthesis destabilizes ACP and reduces the amount of α-TCP in the product (twofold increase reduced α-TCP content from 89% to 2%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.