Abstract
L-Aspartic acid (L-Asp) functionalized magnetite nanoparticles (Fe3O4 NPs) were synthesized through a facile co-precipitation method using L-Asp as a capping agent. UV–Vis, FTIR, XRD, SEM, EDS, TEM, and VSM techniques were used to investigate the formation, morphology, elemental composition, and magnetic properties of the synthesized Fe3O4 NPs. Highly crystalline and spherical shaped pure phase Fe3O4 NPs were successfully synthesized using amino acid as a capping agent. The magnetic measurement analysis confirms the superparamagnetic nature of the synthesized L-Asp capped Fe3O4 NPs. The adsorption efficiency of L-Asp capped Fe3O4 NPs was assessed by the removal of Rhodamine B (RhB). The optimum removal efficiency was found to be 7.7 mg g−1 using 1 mg mL−1 adsorbent, and 30 mg L−1 RhB at pH 7 and 25 °C. The regression (R2adj) and standard deviation (SD) analysis were used to validate both kinetic and isotherm models. Avrami fractional-order and Liu models were selected as the best kinetic and isotherms, respectively. The maximum adsorption capacity (Qo) of L-Asp Fe3O4 NPs toward RhB Liu’s model was found to be 10.44 mg g−1.
Highlights
Water contamination due to numerous organic, inorganic, and biological pollutants has become a huge worldwide environmental issue
We report a facile and green synthesis of amino acid capped Fe3O4 NPs for the adsorptive removal of Rhodamine B (RhB) dye
The synthesis of F e3O4 NPs phase was confirmed by X-ray diffraction (XRD)
Summary
Water contamination due to numerous organic, inorganic, and biological pollutants has become a huge worldwide environmental issue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.