Abstract

We demonstrate a simple one-step process for the synthesis of iron oxide nanoparticle aqueous colloids using the multifunctional molecule, dodecylamine (DDA), that electrostatically complexes with aqueous iron ions (one precursor Fe(2+) from FeCl(2)), reduces them, and subsequently caps the nanoparticles. The iron oxide particles thus synthesized are of the face-centered cubic (FCC) phase with high degree of monodispersity with appropriate concentration of amine capping molecular layer. The aqueous magnetic nanocrystalline colloids were characterized by TEM, XRD, XPS, TGA/DTA and FTIR spectroscopy techniques. The relaxivity, stability, and hydrodynamic size of the nanoparticles were investigated for potential application in magnetic resonance imaging (MRI). The magnetic properties were also studied by using a superconducting quantum interference device (SQUID) magnetometer at room temperature. We believe that such simple one-step synthesis of biocompatible aqueous nanomagnetic colloids will have viable applications in biomedical imaging, diagnostics and therapeutics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.