Abstract

AbstractHyperbranched polyimides (HBPI)s with high glass‐transition temperatures and excellent thermal stability were synthesized through the reaction of commercially available carboxylic acid dianhydrides with tris[4‐(4‐aminophenoxy)phenyl]ethane (TAPE). In particular, hyperbranched polyimide HBPI(TAPE‐DSDA), prepared through the reaction of TAPE with 3,3′,4,4′‐diphenylsulfonetetracarboxylic dianhydride (DSDA), showed higher thermal stability and good solubility. Furthermore, alkaline‐developable, photosensitive HBPI(TAPE‐DSDA)‐MA‐CA was prepared through the reaction of HBPI(TAPE‐DSDA) with glycidyl methacrylate with tetrabutylammonium bromide as a catalyst in N‐methyl‐2‐pyrrolidinone (NMP) followed by the addition reaction of cis‐1,2,3,6‐tetrahydrophthalic anhydride with triphenylphosphine as a catalyst in NMP. The glass‐transition temperatures of HBPI(TAPE‐DSDA)‐MA‐CA were greater than 300 °C. A resist composed of 74 wt % HBPI(TAPE‐DSDA)‐MA‐CA, 22.2 wt % trimethylpropane triacrylate, and 3.8 wt % Irgacure 907 as a photoinitiator achieved a resolution of a 55‐μm line pattern and a 275‐μm space pattern by UV irradiation (1000 mJ/cm2). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3697–3707, 2004

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call