Abstract
Iron oxide nanoparticles are being viewed with interest owing to the great potential they have in the biomedical applications like MRI contrast enhancement, targeted drug delivery, hyperthermia and recently in magnetic separation of cancer cells from the body. Templated synthesis has been considered ideal for synthesis of iron oxide nanoparticles as particles are attracted magnetically, in addition to usual flocculation through van der Waals attraction. Biological templates are attractive owing to their biocompatibility and the attractive porosity and surface chemistry that nature provides. Polysaccharides like chitosan and alginate have been employed in the synthesis of a polyion complex, which provided the active-binding sites for iron(II) ions in solution to bind. The natural organization of chitosan and alginate into a porous film has been exploited to synthesize spherical iron oxide nanoparticles through careful calcination of the iron(II) conjugate film. Our experiments indicate that the formed nanoparticles are highly crystalline, confirm to the hematite structure and have a superparamagnetic response with a low coercivity of 116 Oe. Particles thus synthesized were highly monodisperse with hydrodynamic diameter of 1.8 nm. The symmetric porosity of the film translates into the synthesis of well-aligned nanoparticles of iron oxide. Compared to synthesis in solution, the film-assisted synthesis offered a greater degree of control over the particle size distribution pattern, with the chitosan–alginate template providing the needed spatial separation to prevent the aggregation due to magnetostatic coupling. Such hematite nanoparticles can either be used directly or converted to paramagnetic magnetite by reduction. Zeta potential measurements indicate highly stable nanoparticles, which can therefore be conjugated to cationic liposomes carrying drugs and magnetically guided to target sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Colloids and Surfaces B: Biointerfaces
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.