Abstract

The interaction of n-butanal with a ZnCrO catalyst has been studied by temperature-programmed reaction. Using combined GC, GC-FTIR, and GC-MS techniques, a large number of desorption products have been identified, including 1-butanol, C 8 and C 12 aldehydes, C 7 and C 8 ketones, and C 3, C 4, and C 7 olefins, as well as CO 2, dienes, trienes, aromatics, and light hydrocarbons. The formation of most products is explained by assuming surface reactions of two classes of intermediate species originating from the adsorption of n-butanal and from the surface aldol-like condensation of two molecules of n-butanal. Results indicate that the ZnCr oxide catalyst is active in performing aldehyde condensation, hydrogenation, hydrolysis, dehydrogenation, decarboxylation, and dehydration, along with isomerization and cracking reactions. Different functionalities are associated with different temperature ranges. The detected chemical functionalities are discussed with respect to their relevance to the direct synthesis of methanol and higher alcohols from CO and H 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.