Abstract

Inspired by the bioadhesion mechanism found in mussel, a catechol derivative, 3-(3,4-dihydroxyphenyl)propionic acid (diHPP), is employed as both linker and reducer of Ag+ to synthesize the Ag/TiO2 nanotube (Ag/TNT) heterojunction under ambient conditions in this study. In the prepared Ag/TNT composite, Ag nanocrystals about 3.8 nm in diameter distribute over the TNT surface uniformly and form the heterojunction structure with TNT. The diHPP first links to the TNT surface through the bidentate chelation of catechol group with Ti4+ and then acts as both an anchor and a reducer to in situ nucleate and grow Ag nanocrystals on the TNT surface. By adjusting the AgNO3 concentration, the loading amount of Ag nanocrystals on the TNT surface can be controlled easily, and the visible-light absorption ability of Ag/TNT heterojunctions enhances with increasing the Ag loading amount. Moreover, their photocatalytic activity was evaluated by the degradation capability of Rhodamine B (RhB) under visible light. The Ag/TNT heterojunctions exhibit the high visible-light photocatalytic activity, which can almost degrade 100% RhB within 2 h. This excellent performance can be attributed to the local electric field caused by the surface plasmon resonance (SPR) of Ag nanocrystals and the high adsorption capability of TNTs with large specific surface area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.