Abstract

In this article, AgNPs and MnO2 were successively synthesized on the Graphene oxide (GO) substrate using an in situ method. The AgNPs/MnO2/GO nanocomposite material was modified onto the surface of a glassy carbon electrode (GCE) and the material was electrochemically reduced on the electrode surface. The material obtained after reduction was called AgNPs/MnO2/rGO, which was confirmed by X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) to examine the chemical bonding and by scanning electron microscopy (SEM) combined with energy-dispersive spectroscopy (EDS) to demonstrate the elemental characteristics of the material. In addition, X-ray photoelectron spectroscopy (XPS) analysis was performed to determine the elemental composition, chemical state, and electronic state of the elements on the surface of the material. The application of the reduced material was for the analysis of Piroxicam and Ofloxacin using the differential pulse anodic stripping voltammetry (DP-ASV) method. The investigation of pH and scan rate (v) indicated that the synthesized material had adsorption properties and was applied for the analysis of the anti-inflammatory drug Piroxicam and the antibiotic Ofloxacin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call