Abstract

The biosynthesis of AgNPs using a methanolic extract of Naringi crenulata is described in this study. UV–visible spectroscopy, X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), particle size analyzer (PSA), scanning electron microscope (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) were used to characterize the synthesized AgNPs. The UV–visible spectrum revealed a sharp peak at 420 nm, which represents silver's strong Plasmon resonance. FTIR and XRD confirmed the functional groups (N–H stretch, alkanes, O–H stretch, carboxylic acid, N–H bend, C-X fluoride, and C–N stretch) and face-centered cubic crystalline structure of synthesized AgNPs. SEM and TEM analyses revealed that the synthesized nanoparticles had a spherical morphology with an average diameter of 32.75 nm. The synthesized AgNPs have antibacterial activity against multidrug-resistant bacteria pathogens such as Vibrio cholerae, Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, and Klebsiella pneumoniae. AgNPs can be synthesized using a methanolic extract of Naringi crenulate, and the resulting particle may have wide range of biological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.