Abstract

This study concentrates on biosynthesis of Silver Nanoparticles (AgNPs) from stem extract of Acacia nilotica (A. nilotica). The reaction was completed at a temperature ~40-45°C and time duration of 5h. AgNPs were thoroughly investigated via advanced characterization techniques such as UV-Vis spectrophotometry (UV-Vis), Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffractometry (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), X-ray Photoelectron Spectroscopy (XPS), Thermo Gravimetric Analysis (TGA), Diffuse Reflectance Spectroscopy (DRS), Brunner-Emmett-Teller (BET), Dynamic Light Scattering (DLS), and Zeta potential analysis. AgNPs with average size below 50nm were revealed by all the measuring techniques. Maximum surface area ~5.69m2/g was reported for the as synthesized NPs with total pore volume ~0.0191mL/g and average pore size ~1.13nm. Physical properties such as size and shape have changed the surface plasmon resonance peak in UV-visible spectrum. Antimicrobial activity was reported due to denaturation of microbial ribosome's sulphur and phosphorus bond by silver ions against bacterium Methicillin Resistant Staphylococcus aureus (MRSA) and fungus Candida Albican (CA). Furthermore, AgNPs degraded toxic pollutants such as 4-nitrophenol (4-NP), 2-nitrophenol (2-NP) and various hazardous dyes such as Congo Red (CR), Methylene Blue (MB) and Methyl Orange (MO) up to 95%. The present work provided low cost, green and an effective way for synthesis of AgNPs which were utilized as potential antimicrobial agents as well as effective catalyst for detoxification of various pollutants and dyes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.