Abstract

Chemical coupling, in-situ deposition of supported AgCl, and photoreduction were used to create Ag@AgCl/CA. The morphology, structure, and surface area of the prepared Ag@AgCl/CA were characterized by SEM, TEM, FT-IR, and BET. The photogenerated electron transport efficiency and visible light absorption were analyzed by photocurrent and electrochemical impedance spectroscopy (EIS), respectively. The surface electrical properties and degradation stability were evaluated by zeta potential measurement and cyclic catalytic degradation experiments, and the photocatalytic mechanism was proposed in detail based on the ESR test and trapping experiment. The results showed that the cluster of Ag@AgCl nanoparticles were distributed on the CA crosslinking structure. The prepared Ag@ AgCl/CA photocatalytic material has a high Zeta potential, stable photocurrent, and small photogenerated electron transfer resistance. It has good adsorption and photocatalytic degradation stability for OTC. The material has a relatively strong absorption in the visible light range. Temperature and initial pH had significant effects on the degradation of OTC by photocatalytic materials. The photocatalytic degradation rate was the highest at 40°C and pH6, and the photocatalytic degradation process conformed to the quasi-first-order reaction kinetics. Holes (h+) and superoxide radicals (·O2-) were the main active species for the degradation of OTC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.