Abstract

In this work, we have synthesized 3,5-dihydrazinyl-4-nitro-1H-pyrazole (2), 9-nitro-1H-pyrazolo[3,2-c:5,1-c']bis([1,2,4]triazole)-3,6-diamine (3), and N-N-bonded N,N'-{[4,4'-bi(1,2,4-triazole)]-3,3'-diyl}dinitramide (5) and its stable nitrogen-rich energetic salts in one and two steps in quantitative yields from commercially available inexpensive starting material 4,6-dichloro-5-nitropyrimidine (1). Along with characterization via nuclear magnetic resonance, infrared, differential scanning calorimetry, and elemental analysis, the structures of 2 and 4-8 were confirmed by single-crystal X-ray diffraction. Interestingly, 5-8 show excellent thermal stability (242, 221, 250, and 242 °C, respectively) compared to that of RDX (210 °C). Detonation velocities of 2, 4, 6, and 7 range from 8992 to 9069 m s-1, which are better than that of RDX (8878 m s-1) and close to that of HMX (9221 m s-1). All of these compounds are insensitive to impact (10-35 J) and friction (360 N) sensitivity. These excellent energetic performances, stabilities, and synthetic feasibilities make compounds 2, 4, 6, and 7 promising candidates as secondary explosives and potential replacements for the presently used benchmark explosives RDX and HMX.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call