Abstract
AbstractAs an in‐depth profile control agent, water‐soluble phenolic resin crosslinking polyacrylamide weak gel has been widely used in the middle and high water cut stage of water flooding reservoir. In this study, the phenolic resin was synthesized by two‐step alkali catalysis. Factors influencing the synthesis of phenolic resin, including the molar ratio of phenol and formaldehyde, catalyst types, reaction time, were investigated with hydroxylmethyl and aldehyde content as the criterion. When the molar ratio of phenolic resin was 1:2 and NaOH was catalyst, at 80°C for 4 h, the phenolic resin had the highest hydroxymethyl content (49.37%) and the lowest free aldehyde content (2.95%). Weak gel was formed by the reaction of LT002‐polyacrylamide with phenolic resin. Taking the gelation time and strength as criteria, the factors influencing the crosslinking property, including hydroxymethyl content, crosslinker addition, and polyacrylamide concentration were investigated respectively. Under optimal formulation, the property investigation shows that the hydroxymethyl group in the phenolic resin can be crosslinked with the amide group in polyacrylamide, the gelation time is long (50–60 h), and the gelation strength is larger than 5 × 104 mPa s, which is conductive to the plugging of deep oil layers. When the permeability was 5061 × 10−3 μm2, the plugging rate was 72.73%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.