Abstract

Superabsorbent polymers as soft materials that can absorb water have aroused great interest in the fields of agriculture and forestry. Water absorption and water retention performance of a hydrogel are important indicators to evaluate its practical application. However, few reports show that hydrogels have both excellent water absorption and water retention properties. To date, superabsorbent hydrogels with a swelling capacity of more than 3000 g g−1 have rarely been reported. In this work, a novel superabsorbent poly(acrylic acid) (PAA)-based nanocomposite hydrogel (NC gel) was prepared via free radical polymerization of acrylic acid by using vinyl hybrid silica nanospheres (VSNPs) as the cross-linking agent. The PAA NC hydrogel achieved a great swelling ratio of more than 5000 times in deionized water at 323 K, and the swollen hydrogel could hold 60% moisture when it was exposed to the air at 303 K for 42 h. Moreover, the hydrogel also obtained a good swelling ratio of 136 g g−1 in NaCl solution. The PAA NC hydrogel showed excellent repetitive swelling ability. The influences of variable factors (acrylic acid, initiator and sodium hydroxide) on the swelling ratio of the NC hydrogel were researched. It can be speculated that the PAA NC hydrogel has potential application in agriculture and forestry areas due to its excellent water absorption and water retention properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call