Abstract

Synthesis of sparse arrays is a promising area of research for a wide range of applications including radar and millimeter-wave wireless communication. The design goal of array thinning problems is to reduce the number of elements of an array without significantly affecting its performance. This work presents a technique for synthesizing a sparse phased-array antenna from a 16×16 uniform rectangular array (URA). The proposed approach reduces the number of elements by 50% without any significant increase in the peak sidelobe level (PSLL) for all possible scan angles in the azimuthal and elevation plans within a finite range of scan angles. The synthesis includes an artificial neural network (ANN) model for estimation of the excitation weights of the URA for a given scan-angle. The weights of the sparse array are computed by the Hadamard product of the weight matrix of the URA with a binary matrix that is obtained using particle swarm optimization (PSO) to minimize the PSLL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.