Abstract

Synthesis of a carbon nanobelt (CNB) is a very challenging task in organic chemistry. Herein, we report the successful synthesis of an octabenzo[12]cyclacene based CNB (6), which can be regarded as a sidewall fragment of a (12,0) carbon nanotube. The key intermediate compound, a tetraepoxy nanobelt (5), was first synthesized by Diels-Alder reaction, and subsequent reductive aromatization gave the fully conjugated CNB 6. X-ray crystallographic analysis unambiguously confirmed the belt-shaped structure of 6. 1 H NMR spectrum and theoretical calculations (ACID, NICS, and 2D/3D ICSS) revealed localized aromaticity and stronger shielding chemical environment in the inner region of the belt. The optical properties (absorption and emission) of 6 were studied and correlated to its electronic structure. Strain analysis indicates that the phenyl substituents at the zigzag edges are crucial to the successful synthesis of 6. This report presents a new strategy towards highly strained CNBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.