Abstract

The renewable macrocyclic musk 3-methylcyclohexadec-6-enone was prepared via macrocyclic olefin metathesis on gram scale using two different protocols: a room temperature batch process which afforded a 57% yield of the desired macrocycle, but required long reaction times (5 d). In contrast, a continuous flow strategy provided a lower yield of 32% of macrocycle, although the short reaction times (150 °C, 5 min) improve throughput (1 g/4.8 h). Batch and continuous flow protocols were also tested on other macrocyclizations involving substrates bearing trisubstituted olefins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.