Abstract

In order to selectively oxidize benzyl alcohol, a novel noble metal catalyst based on polymer ionic liquids with a core-shell structure was created. First, polymer ionic liquid microspheres (PILMs) were prepared by free radical polymerization. Second, the in situ adsorption of Au nanoparticles on the surface of PILMs was accomplished, thanks to the strong electrostatic interaction between N atoms and metal ions on the diazole ring of PILMs. Additionally, the introduction of Al(OH)3 prevented the aggregation of Au nanoparticles and promoted the catalytic reaction. Finally, the PILM/Au/Al(OH)3 catalyst with a core-shell structure was formed. The effectiveness of the PILM/Au/Al(OH)3 catalyst was assessed by varying the catalyst's type, quantity, amount of Au, amount of H2O2, temperature, and reaction time. After five cycles of experiments, the catalyst was effective and reusable. In addition, the potential catalytic mechanism of the catalyst in the oxidation of benzyl alcohol was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.