Abstract

β-phosphoglucomutase (βPGM) catalyzes the conversion of β-glucose 1-phosphate (βG1P) to glucose-6-phosphate (G6P), a universal source of cellular energy, in a two-step process. Transition state analogue (TSA) complexes formed from substrate analogues and a metal fluoride (MgF3− and AlF4−) enable analysis of each of these enzymatic steps independently. Novel substrate analogues incorporating fluorine offer opportunities to interrogate the enzyme mechanism using 19F NMR spectroscopy. Herein, the synthesis of a novel fluorinated phosphonyl C-glycoside (3-deoxy-3-fluoro-β-d-glucopyranosyl)methylphosphonate (1), in 12 steps (0.85 % overall yield) is disclosed. A four-stage synthetic strategy was employed, involving: 1) fluorine addition to the monosaccharide, 2) selective anomeric deprotection, 3) phosphonylation of the anomeric centre, and 4) global deprotection. Analysis of βPGM and 1 will be reported in due course.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.