Abstract

A number of N, N′-disubstituted perylenetetracarboxylic diimides have been reported to bind effectively to DNA that adopts G-quadruplex motifs. In some cases, this binding may actively drive the transition from single-strand DNA to the quadruplex form. The perylenediimides in the reported cases all have amine-containing side chains, which are thought to interact with the grooves of the quadruplex and help dictate the selectivity of these compounds for quadruplex versus duplex DNA. We synthesized a polyethyleneglycol-swallowtailed (PEG-tailed) perylenediimide that is water-soluble even though it is uncharged. Binding to duplex and quadruplex DNA of this perylenediimide was studied by fluorescence quenching titrations under a variety of salt conditions, and the compound’s effect on quadruplex formation was studied by non-denaturing gel electrophoresis. Our results indicate that while the molecule binds to single-stranded DNA quite effectively and with selectivity, it does not drive the transition of the DNA to the tetrameric quadruplex structure, supporting the idea that charge neutralization is a key component of perylene compounds that stabilize tetrameric quadruplexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.