Abstract

This experiment involved the chemical conversion of pure stearic acid from buffalo adipose tissue to a waxy stearyl stearate, which was subsequently applied as a coating film to extend the shelf life of recently harvested fruits. Fat was extracted from minced adipose tissue using the dry rendering procedure, and it was then characterized. The extracted fat was hydrolyzed into a mixture of free fatty acids and glycerol. The supercritical CO2 extractor was used for stearic acid individual extraction in pure form from the free fatty acid mixture, and it was confirmed according to its melting point (69.2–70.0 °C), elemental analysis, GC–MS for esterified fatty acids. The isolated stearic acid was used for the synthesis of a new hydrophobic wax named stearyl stearate. The chemical structure of the prepared compound was established according to its elemental analysis and spectral data. The new hydrophobic wax was used as a coating film to enhance the shelf life of freshly harvested tomato fruits. Therefore, stearyl stearate solution (2.00% w/v diethyl ether) was used for tomato coating and compared to chitosan-coated tomatoes, where weight loss, pH, fruit firmness, ascorbic acid concentration, and total soluble solids were studied for a period of 15 days at 23 ± 1.0 °C and 65 ± 2.0% relative humidity. The results revealed that coating with stearyl stearate solution (2.00% w/v diethyl ether) could delay tomatoes’ ripening during the experiment condition. A sensory evaluation of the coated tomatoes was carried out and showed acceptable taste for the tomatoes that were coated with stearyl stearate. On the other hand, the acute oral toxicity of stearyl stearate using albino mice showed complete safety up to 25 g/kg mice weight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call