Abstract
Environment-sensitive fluorescent probes have always been as forceful tools to understand the pathophysiological processes of relevant diseases. In this work, a new fluorescent probe with typical D-π-A structure was designed and showed high sensitivity to polarity and viscosity changes. DPAR could selectively detect human serum albumin (HSA) with turn-on orange emission in aqueous PBS buffer (pH 7.4), which showed advantages such as rapid response (4 min), high sensitivity (LOD 0.98 μg/mL). Therefore, it was successfully used for achieving HSA levels in urine samples and HSA imaging in HeLa cells. DPAR also exhibited the capability to recognize the cancer cells over the normal cells by lower polarity guided lipid droplets (LDs) imaging (in green emission channel). The detection mechanism for HSA and cancer diagnosis was convinced that DPAR encountered the lower-polarity and higher-viscosity microenvironment, resulting in the confinement of the TICT process and intramolecular rotation. These facts showed that DPAR had good application prospects in environment-related biomedical research and clinical diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.