Abstract

The bio- and thermal degradation as well as the water absorption properties of a novel biocomposite comprising cellulose nanoparticles, natural rubber and polylactic acid have been investigated. The biodegradation process was studied through an assembled condition based on the soil collected from the central Malaysian palm oil forests located in the University of Nottingham Malaysia. The effects of the presence of the cellulose nanoparticles and natural rubber on the biodegradation of polylactic acid were investigated. The biodegradation process was studied via thermal gravimetric analysis and scanning electron microscopy. It was understood that the reinforcement of polylactic acid with cellulose nanoparticles and natural rubber increases the thermal stability by ~ 20 °C. Limited amorphous regions on the surface of the cellulose nanoparticles accelerated the biodegradation and water absorption processes. Based on the obtained results, it is predicted that complete biodegradation of the synthesised biocomposites can take place in 3062 h, highlighting promising agricultural applications for this biocomposite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.