Abstract

3D metal–organic frameworks (MOFs) can be appropriate templates for the fabrication of nanomaterials due to they have active sites exposed on the channel or surface, which thus provide them with improved catalytic performance. In this study, a 3D cobalt-based MOF [Co(H2bpta)]n (Co-MOF), where H4bpta denotes 2,2′,4,4′-biphenyltetracarboxylic acid, has been constructed with the use of a ligand with a high carbon content. On this basis, a 2D magnetic carbon-coated cobalt nanoparticle composite (Co@C) was prepared by using the title MOF under different temperatures. Magnetic Co@C can readily absorb dye from the solution and can thus act as an inexpensive and fast-acting adsorbent. Moreover, we have explored the adsorption isotherms, kinetics and thermodynamics of the anion dyes in detail. The adsorption capacity of the Co@C-800 for investigated methyl orange (MO) and congo red (CR) dyes were 773.48 and 495.66 mg g−1, respectively. It is noteworthy that MO adsorption is higher in existing materials. Thermodynamic studies suggest that the adsorption processes are spontaneous and exothermic. This study opens a new insight into the synthesis and application of carbon-based materials that enable the selective removal of organic dyes.Graphical AbstractA Co-MOF has been solvothermal synthesized and structurally characterized, which was used as a combined catalyst and carbon source for the synthesis of magnetic Co@C. Interestingly, the as-grown Co@C-800 exhibits high-performance selective adsorption of anionic dyes (MO and CR) with high adsorption capacities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call