Abstract
A lithium-encapsulated fullerenol Li@C60(OH)18, as an example of a polar solvent-soluble endohedral fullerene derivative, has been synthesized and fully characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, UV spectroscopy, electron spin resonance (ESR) spectroscopy, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), elemental analysis, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the particle size was determined using the induced grating (IG) method, and scanning probe microscopy. The encapsulated Li+ was clearly detected by 7Li NMR at very high field in the range −15 to −19 ppm, an intermediate lithium-encapsulated fullerenol was detected by MALDI-TOF-MS, and the molar ratio of lithium-encapsulated fullerenol to empty fullerenol was quantitatively determined to be 12:88 by ICP-AES. The solid-state ESR and particle size measurements using the IG method showed the characteristic anionic behavior with no external counter cations, in what can be called a “cation-encapsulated anion nanoparticle”, revealing the drastic differences between its properties and those of empty C60(OH)16. Open image in new window
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.