Abstract

Due to the inherent flammability of polypropylene (PP), it is limited in the application of flame retardant materials. In this work, a novel char forming agent, hyperbranched phosphorus-containing polyurethane (HPPU), was synthesized and used as efficient char forming agent. When ammonium polyphosphate (APP) was combined with HPPU, APP/HPPU endow PP significantly improved flame retardancy than single APP. Although the total carbon monoxide production (TCOP) of some PP/APP/HPPU composites is higher than that of PP/APP composite, it is still lower than that of neat PP. LOI (limited oxygen index) and UL-94 tests reveal that PP composites with 25 wt% HPPU/APP with ratio of 4:1 are able to reach 27 vol% and V-0 rating, respectively. The addition of 25 wt% APP/HPPU with ratio of 2:1 into PP can result in decrease in peak heat release rate of about 72%, decrease in total heat release of about 38% and decrease in TCOP of about 93%. APP/HPPU promotes PP to form more stable, compact, and continuous char layer which effectively hinder heat and oxygen transfer and protect the inner matrix from decomposition. Thermogravimetric-infrared results reveal that the gas phase flame retardant mechanism of APP/HPPU is the dilution effect of ammonia from APP and the flame inhibition effect of phosphorus-containing species from HPPU.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.