Abstract

N,N′-Substituted p-phenylenediamine quinones (PPD-Qs) are the emerging toxicant, which transform from the rubber tire antioxidant N,N′-substituted p-phenylenediamines (PPDs). Because of their potential toxic and widespread occurrence in the environment, PPD-Qs have received great attention. However, efficiently extracting PPD-Qs from complex samples is still a challenge. Herein, a cysteine functional covalent organic framework (Cys-COF) designed according to the “donor-acceptor” sites of hydrogen bonding of PPD-Qs was synthesized via click reaction and then used as solid-phase extraction (SPE) adsorbent. Cys-COF can form the seven-member ring adsorption structure with PPD-Qs via hydrogen bonding. The adsorption mechanism was tentatively revealed by density functional theory (DFT). After optimizing the Cys-COF-SPE parameters, PPD-Qs were efficiently extracted from water, soil, sediment, and fish, followed by detection using ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The Cys-COF-SPE-UHPLC-MS/MS method exhibited ideal linearity (R2 ≥ 0.9932), high relative recoveries (80.4–111 %), and low limits of detection (0.0001–0.0013 ng mL−1). In addition, the bioconcentration kinetics in goldfish provides a feasible platform to investigate the toxicity and accumulated ability of PPD-Qs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.