Abstract

The synthesis of a copper(II) oxide–montmorillonite composite and its application in the removal of lead(II) ions in solution were investigated. The Acros Organics (ACOR) montmorillonite was activated using potassium hydroxide solution. The activated ACOR montmorillonite was titrated with copper(II) nitrate solution to produce the copper(II) oxide–montmorillonite composite. Adsorption experiments were conducted using batch-mode techniques under reducing conditions at ambient temperature. The reaction mechanism indicated a higher proton coefficient, greater intraparticle diffusion, and higher mass transfer rates compared with those achieved with bare montmorillonite. The intraparticle diffusion constant derived from the slope was 2.93−3 (mg⋅g−1⋅min−0.5), and the intercept C was 9.86, ≠ 0. In the presence of a CuO coating, the adsorption efficiency was 85.55% at pH 4 and 89.62% at pH 7. Therefore, the copper(II) oxide-montmorillonite composite, as a novel adsorbent with a very high adsorption capacity, exhibited substantially enhanced adsorption of Pb2+ ions compared with bare montmorillonite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call