Abstract
The cyclic alkyl(amino) carbene (cAAC) 1 reacted with SiI4 in toluene, affording the cAAC-silicon tetraiodide complex [(cAACMe)SiI4] (2, cAACMe = :C(CH2)(CMe2)2NAr, Ar = 2,6-iPr2C6H3). It further reacted with two equivalents of KC8 in toluene at room temperature to afford the first cAAC-diiodosilylene [(cAACMe)SiI2] (3). DFT calculations show that the Ccarbene-Si bond in 3 is formed by the donation of the lone pair of electrons on the Ccarbene atom to the SiI2 moiety, while the π-back-bonding of the lone pair of electrons on the Si atom to the Ccarbene atom is negligible. The presence of the lone pair of electrons on the silicon atom in 3 is also evidenced by its reaction with N3SiMe3 to form the cAAC-silaimine complex [(cAACMe)Si(NSiMe3)I2] (4). Compound 3 reacted with IiPrMe (:C{N(iPr)CMe}2) in n-hexane to form the NHC-cAAC-silyliumylidene iodide [cAACMe(SiI)IiPrMe]I (5), which was then reacted with two equivalents of KC8 in toluene to furnish [cAACMeSi(IiPrMe)] (6). The experimental and theoretical studies suggest that 6 can be described as a bent silaallene with a perturbed electronic structure, which can be attributed to the different donor-acceptor properties of cAACMe and IiPrMe. Compounds 3-6 were elucidated by NMR spectroscopy, X-ray crystallography, and theoretical studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.