Abstract

Background:Eusiderin A is a neolignan derivate, which makes up the majority of the secondary metabolite of Eusideroxylon zwageri. It has been reported as a potent biopesticide and antifungal agent. Previous studies on the oxidation of terminal methylene of the allylic chain in Eusiderin A have been able to produce primary alcohol, pinacol, and an aldehyde which demonstrated strong activity against plant pathogenic fungi, therefore activity against dermal fungi needs to be studied.Objective:The current study aims to improve the hydrophilicity of Eusiderin A via oxidation of the allylic chain in order to derive a potent antifungal property.Methods:Transformation of Eusiderin A has been achieved by using the Wacker Oxidation Method in combination with the α-Hydroxylation-Ketone Method to produce 7,3’-epoxy-8,4’-oxyneolignane-1’- carboxylic acid. The structure of the 7,3’-epoxy-8,4’-oxyneolignane-1’-carboxylic acid was identified from spectroscopy data. The in vitro antifungal activity study was performed using the paper disc diffusion method against Trichophyton mentagrophytes.Results:New molecule of natural Eusiderin A through the oxidation of the allylic chain to increase the hydrophilicity of Eusiderin A has been designed. Based on the observed UV, IR, 1H and 13C-NMR, and MS spectra, it can be stated that the 7,3’-epoxy-8,4’-oxyneolignane-1’-carboxylic acid has been formed. At a concentration of 50 ppm, this compound showed antifungal activity against Trichophyton mentagrophytes.Conclusion:It can be concluded that the 7,3’-epoxy-8,4’-oxyneolignane-1’-carboxylic acid is a potent antifungal agent as it is able to inhibit the Trichophyton mentagrophytes colonies growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.