Abstract

The development of theranostic radiotracers relies on their binding to specific molecular markers of a particular disease and the use of corresponding radiopharmaceutical pairs thereafter. This study reports the use of multiamine macrocyclic moieties (MAs), as linkers or chelators, in tracers targeting the neurotensin receptor-1 (NTSR-1). The goal is to achieve elevated tumor uptake, minimal background interference, and prolonged tumor retention in NTSR-1-positive tumors. Methods: We synthesized a series of neurotensin antagonists bearing MA linkers and metal chelators. The MA unit is hypothesized to establish a strong interaction with the cell membrane, and the addition of a second chelator may enhance water solubility, consequently reducing liver uptake. Small-animal PET/CT imaging of [64Cu]Cu-DOTA-SR-3MA, [64Cu]Cu-NT-CB-NOTA, [68Ga]Ga-NT-CB-NOTA, [64Cu]Cu-NT-CB-DOTA, and [64Cu]Cu-NT-Sarcage was acquired at 1, 4, 24, and 48 h after injection using H1299 tumor models. [55Co]Co-NT-CB-NOTA was also tested in HT29 (high NTSR-1 expression) and Caco2 (low NTSR-1 expression) colorectal adenocarcinoma tumor models. Saturation binding assay and internalization of [55Co]Co-NT-CB-NOTA were used to test tracer specificity and internalization in HT29 cells. Results: In vivo PET imaging with [64Cu]Cu-NT-CB-NOTA, [68Ga]Ga-NT-CB-NOTA, and [55Co]Co-NT-CB-NOTA revealed high tumor uptake, high tumor-to-background contrast, and sustained tumor retention (≤48 h after injection) in NTSR-1-positive tumors. Tumor uptake of [64Cu]Cu-NT-CB-NOTA remained at 76.9% at 48 h after injection compared with uptake 1 h after injection in H1299 tumor models, and [55Co]Co-NT-CB-NOTA was retained at 60.2% at 24 h compared with uptake 1 h after injection in HT29 tumor models. [64Cu]Cu-NT-Sarcage also showed high tumor uptake with low background and high tumor retention 48 h after injection Conclusion: Tumor uptake and pharmacokinetic properties of NTSR-1-targeting radiopharmaceuticals were greatly improved when attached with different nitrogen-containing macrocyclic moieties. The study results suggest that NT-CB-NOTA labeled with either 64Cu/67Cu, 55Co/58mCo, or 68Ga (effect of 177Lu in tumor to be determined in future studies) and NT-Sarcage labeled with 64Cu/67Cu or 55Co/58mCo may be excellent diagnostic and therapeutic radiopharmaceuticals targeting NTSR-1-positive cancers. Also, the introduction of MA units to other ligands is warranted in future studies to test the generality of this approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.