Abstract

The widespread presence of ammonia nitrogen (NH4+–N) pollutants poses a serious threat to water environment health. In this study, a novel zeolite (WTR–CFA zeolite) with excellent adsorption performance is synthesized using CFA as the raw material and water treatment residue (WTR) as the aluminum source through an ultrasonic–assisted alkali melt hydrothermal method. Compared with traditional CFA–zeolite, WTR–CFA zeolite only generates 4A zeolite with a single crystal phase, and the peak shape is sharp, which results in better crystallization. WTR–CFA zeolite perfectly solves the technical problems of the low utilization rate and poor controllability of the crystal form in traditional artificially synthesized zeolites. The maximum NH4+–N adsorption capacity of WTR–CFA zeolite is 29.80 mg/g, which is higher than that of most adsorbents reported in previous studies. After five cycles of adsorption regeneration, the regeneration efficiency of WTR–CFA zeolite only decreased from 98.84% to 97.12%, which demonstrates excellent environmental value. The adsorption isotherms and kinetics of NH4+–N conform to the Langmuir model and quasi–second order kinetic model, respectively, which indicates that ion–exchange–dominant chemical adsorption plays a major role in the adsorption mechanism. In summary, this study combines the use of CFA and WTR resources with the treatment of aquatic pollution to reduce material synthesis costs, control the crystal structure of WTR–CFA zeolite, and increase adsorption capacity. This approach achieves the goals of “waste treatment and turning waste into treasure”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call