Abstract

Sulfur containing glycosides offer an exciting prospect for inclusion within noncanonical glycan sequences, particularly as enabling probes for chemical glycobiology and for carbohydrate-based therapeutic development. In this context, we required access to 4-thio-d-glucopyranose and sought its chemical synthesis. Unable to isolate this material in homogenous form, we observed instead a thermodynamic preference for interconversion of the pyranose to 4-thio-d-glucofuranose. Accordingly, we present an improved method to access both bis(4-thio-d-glucopyranoside)-4,4′-disulfide and 4-thio-d-glucofuranose from a single precursor, demonstrating that the latter compound can be accessed from the former using a dithiothreitol controlled reduction of the disulfide. The dithiothreitol-mediated interconversion between pyranose (monomer and disulfide) and furanose forms for this thiosugar is monitored by 1H NMR spectroscopy over a 24-h period. Access to these materials will support accessing sulfur-containing mimetics of glucose and derivatives therefrom, such as sugar nucleotides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.