Abstract

4-Cyanoindole-2'-deoxyribonucleoside (4CIN) is a fluorescent isomorphic nucleoside analogue with superior spectroscopic properties in terms of Stokes shift and quantum yield in comparison to the widely utilized isomorphic nucleoside analogue, 2-aminopurine-2'-deoxyribonucleoside (2APN). Notably, when inserted into single- or double-stranded DNA, 4CIN experiences substantially less in-strand fluorescence quenching compared to 2APN. Given the utility of these properties for a spectrum of research applications involving oligonucleotides and oligonucleotide-protein interactions (e.g., enzymatic processes, DNA hybridization, DNA damage), we envision that additional reagents based on 4-cyanoindole nucleosides may be widely utilized. This protocol expands on the previously published synthesis of 4CIN to include synthetic routes to both 4-cyanoindole-ribonucleoside (4CINr) and 4-cyanoindole-2'-deoxyribonucleoside-5'-triphosphate (4CIN-TP), as well as a method for the enzymatic incorporation of 4CIN-TP into DNA by a polymerase. These methods are anticipated to further enable the utilization of 4CIN in diverse applications involving DNA and RNA oligonucleotides. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Synthesis of 4-cyanoindole-2'-deoxyribonucleoside (4CIN) and 4CIN phosphoramidite 4 Basic Protocol 2: Synthesis of 4-cyanoindole-ribonucleoside (4CINr) Basic Protocol 3: Synthesis of 4-cyanoindole-2'-deoxyribonucleoside-5'-triphosphate (4CIN-TP) Basic Protocol 4: Steady state incorporation kinetics of 2AP-TP and 4CIN-TP by a DNA polymerase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call